PostgreSQL
The postgresql
adapter for PostgreSQL wraps the github.com/lib/pq
driver
written by Blake Mizerany.
Before starting to read this detailed information, it is advisable that you take a look at the getting started page so you become acquainted with the basics of
upper/db
, and you can grasp concepts better.
Installation
Use go get
to download and install the adapter:
go get github.com/upper/db/v4/adapter/postgresql
Setup
Import the postgresql
package into your application:
// main.go
package main
import (
"github.com/upper/db/v4/adapter/postgresql"
)
Define the postgresql.ConnectionURL
struct:
// ConnectionURL defines the DSN attributes.
type ConnectionURL struct {
User string
Password string
Host string
Database string
Options map[string]string
}
Pass the postgresql.ConnectionURL
value as argument to postgresql.Open()
to
establish a connection to the server, and create a database session:
settings = postgresql.ConnectionURL{
...
}
sess, err = postgresql.Open(settings)
...
Use the
postgresql.ParseURL()
function to convert a DSN into apostgresql.ConnectionURL
:
// ParseURL parses a DSN into a ConnectionURL struct.
postgresql.ParseURL(dsn string) (ConnectionURL, error)
Once the connection is established, you can start performing operations on the database.
Example
In the following example, a table named 'birthday' consisting of two columns ('name' and 'born') will be created. Before starting, the table will be searched in the database and, in the event it already exists, it will be removed. Then, three rows will be inserted into the table and checked for accuracy. To this end, the database will be queried and the matches (insertions) will be printed to standard output.
The birthday
table with the name
and born
columns is created with these
SQL statements:
--' example.sql
DROP TABLE IF EXISTS "birthday";
CREATE TABLE "birthday" (
"name" CHARACTER VARYING(50),
"born" TIMESTAMP
);
The psql
command line tool is used to run the statements in
the upperio_tests
database:
cat example.sql | PGPASSWORD=upperio psql -Uupperio upperio_tests
The rows are inserted into the birthday table. The database is queried for the insertions and is set to print them to standard output.
package main
import (
"fmt"
"log"
"time"
"github.com/upper/db/v4/adapter/postgresql"
)
var settings = postgresql.ConnectionURL{
Database: `upperio_tests`, // Database name
Host: `localhost`, // Server IP or name
User: `upperio`, // Username
Password: `upperio`, // Password
}
type Birthday struct {
// The 'name' column of the 'birthday' table
// is mapped to the 'name' property.
Name string `db:"name"`
// The 'born' column of the 'birthday' table
// is mapped to the 'born' property.
Born time.Time `db:"born"`
}
func main() {
// The database connection is attempted.
sess, err := postgresql.Open(settings)
if err != nil {
log.Fatalf("db.Open(): %q\n", err)
}
defer sess.Close() // Closing the session is a good practice.
// The 'birthday' table is referenced.
birthdayCollection := sess.Collection("birthday")
// Any rows that might have been added between the creation of
// the table and the execution of this function are removed.
err = birthdayCollection.Truncate()
if err != nil {
log.Fatalf("Truncate(): %q\n", err)
}
// Three rows are inserted into the 'Birthday' table.
birthdayCollection.Insert(Birthday{
Name: "Hayao Miyazaki",
Born: time.Date(1941, time.January, 5, 0, 0, 0, 0, time.Local),
})
birthdayCollection.Insert(Birthday{
Name: "Nobuo Uematsu",
Born: time.Date(1959, time.March, 21, 0, 0, 0, 0, time.Local),
})
birthdayCollection.Insert(Birthday{
Name: "Hironobu Sakaguchi",
Born: time.Date(1962, time.November, 25, 0, 0, 0, 0, time.Local),
})
// The database is queried for the rows inserted.
res := birthdayCollection.Find()
// The 'birthdays' variable is filled with the results found.
var birthdays []Birthday
err = res.All(&birthdays)
if err != nil {
log.Fatalf("res.All(): %q\n", err)
}
// The 'birthdays' variable is printed to stdout.
for _, birthday := range birthdays {
fmt.Printf("%s was born in %s.\n",
birthday.Name,
birthday.Born.Format("January 2, 2006"),
)
}
}
Compile the example and run it:
go run example.go
The output will be:
Hayao Miyazaki was born in January 5, 1941.
Nobuo Uematsu was born in March 21, 1959.
Hironobu Sakaguchi was born in November 25, 1962.
Adapter particularities
JSON Types
You can save and retrieve data when using JSON types. If you want to try this
out, make sure the column type is JSONB and the field type
is postgresql.JSONB
:
package main
import (
// ...
"github.com/upper/db/v4/adapter/postgresql"
// ...
)
type Person struct {
...
Properties postgresql.JSONB `db:"properties"`
Meta postgresql.JSONB `db:"meta"`
}
JSON types are supported on PostgreSQL 9.4+. In addition to these, the adapter
features other custom types
like postgresql.StringArray
and postgresql.Int64Array
.
SQL builder
Use the SQL builder for any complex SQL query:
q := sess.SQL().Select(
"p.id",
"p.title AD publication_title",
"a.name AS artist_name",
).From("artists AS a", "publication AS p").
Where("a.id = p.author_id")
var publications []Publication
if err = q.All(&publications); err != nil {
log.Fatal(err)
}
Auto-incremental Keys (Serial)
If you want tables to generate a unique number automatically whenever a new record is inserted, you can use auto-incremental keys. In this case, the column must be defined as SERIAL.
For the ID to be returned by db.Collection.Insert()
, the SERIAL column must
be set as PRIMARY KEY too.
CREATE TABLE foo(
id SERIAL PRIMARY KEY,
title VARCHAR
);
Remember to use omitempty
to specify that the ID field should be ignored if
it has a zero value:
type Foo struct {
ID int64 `db:"id,omitempty"`
Title string `db:"title"`
}
otherwise, an error will be returned.
Helper functions
Use db.Func
to escape function names and arguments:
res = sess.Find().Select(db.Func("DISTINCT", "name"))
Use the db.Raw()
function for strings that have to be interpreted literally:
res = sess.Find().Select(db.Raw("DISTINCT(name)"))
db.Raw
can also be used as a condition argument, similarly to db.Cond.
Take the tour
Get the real upper/db
experience, take the tour.